Article presentation:

„A SOBER LOOK AT CLUSTERING STABILITY“
(Ben-David et al)

presented by Sander Sõnajalg
What is clustering?

- **Problem**: How to divide a given set of datapoints into k meaningful groups.
- **Motivation**: Learn something new about my data, spot any patterns
- **The means**: In the given article, the focus is on the **cost-based** clustering algorithms. They all share the same idea: minimize or maximize some kind of an objective function.
What is clustering? (2)
What is clustering? (2)

$k = 2$
What is clustering? (2)
Clustering stability

The probability distribution

- Distribution is fixed, but unknown.
- (Here: blue colour marks the area for which the probability of finding a data point is higher than 0).

k – the number of clusters
Clustering stability

Sample

- A set of data points sampled from the underlying probability distribution.

k – the number of clusters
Clustering stability

- We only see the sample; nothing is known about the probability distribution itself.

k – the number of clusters
Clustering stability

- $k = 2$

k – the number of clusters
Clustering stability

- $k = 2$
- Another sample from the same probability distribution.

k – the number of clusters
Clustering stability

- $k = 2$
- Another sample from the same probability distribution...
Clustering stability

- $k = 2$
- Another sample from the same probability distribution...
- .. could result in a completely different clustering.
- This is what we call clustering instability.

$k - the number of clusters$
What is clustering stability?

- Clustering algorithm is **stable** when – from one sample to another – the algorithm ends up with similar clusterings.
- Very different clusterings for different samples = **instability**.
Importance of clustering stability

• Provides a good metric for evaluating and comparing different clustering algorithms.
• Has been extensively used to guess a good number of clusters k.
• The latter, as the article suggests, is actually a mistake.
Why should stability help finding a good number of clusters k?

- When k is too large, the algorithm has to "randomly" split several true clusters.
- When k is too small, the algorithm has to "randomly" merge several true clusters.
- So... for bad k value... performance is unstable?
- **This is actually not true in general!**
- The reason: splitting or merging is not really random.

k – the number of clusters
Using stability to find k: instability from symmetry (the \textit{desired} case)

The probability distribution

- Probability distribution is \textit{symmetric}.

k – the number of clusters
Using stability to find k: instability from symmetry (the *desired* case)

- Which k to use?
- Intuitively, $k=4$.

k – the number of clusters
Using stability to find k: instability from symmetry (the *desired* case)

- Which k to use?

- **Assumption**: wrong choice of k results in unstable algorithm performance.

- \Rightarrow Trying to cluster with wrong k should result in instability.

- Example: instability with $k=2$.

k – the number of clusters
Using stability to find k: instability from symmetry (the *desired* case)

- Which k to use?
- Another sample from the same probability distribution.

k – the number of clusters
Using stability to find k: instability from symmetry (the desired case)

- Which k to use?
- Another sample from the same probability distribution.

k – the number of clusters
Using stability to find k: instability from symmetry (the **desired** case)

- Which k to use?
- Another sample from the same probability distribution..
- .. could result in a completely different clustering.
- Here, instability correctly indicates that $k=2$ is a wrong choice.

k – the number of clusters
Using stability to find k: the **undesired** case: stable performance on bad k

The probability distribution

- non-symmetric probability distribution case.

k – the number of clusters
Using stability to find k:

the **undesired** case: stable performance on bad k

The sample

k – the number of clusters
Using stability to find k: the undesired case: stable performance on bad k
Using stability to find k: the **undesired** case: stable performance on bad k

- The correct choice seems to be $k=2$.
- Empirically, $k=3$ doesn't seem to be a very good choice.
- If stability was to be a good indicator for detecting a good value for k, we would expect instability for $k=3$.

k – the number of clusters
Using stability to find k: the **undesired** case: stable performance on bad k

Clustering with $k=3$
Using stability to find k: the **undesired** case: stable performance on bad k

Clustering with $k=3$

- Here, all common algorithms would go breaking the larger group through-out different samples.
- Here, stable performance suggests that $k=3$ would be a good choice, although it actually isn't.

k – the number of clusters
USING STABILITY TO FIND THE NUMBER OF CLUSTERS IS ABSOLUTELY UNRELIABLE
NOW, FORMALLY..
Clustering distance

- (def) Let P be a family of probability distributions over some domain X.
- Let S be a family of clusterings of X.
- A clustering distance is a function $d : P \times S \times S \rightarrow [0,1]$ that satisfying for any $P \in P$ and $C_1, C_2, C_3 \in S$:
 - $d_P(C_1, C_1) = 0$
 - $d_P(C_1, C_2) = d_P(C_2, C_1)$ (symmetry)
 - $d_P(C_1, C_3) \geq d_P(C_1, C_2) + d_P(C_2, C_3)$ (triangle inequality)
Hamming distance

- Defined as:

\[d_P(C_1, C_2) = \Pr_{x \sim_P, y \sim_P} [(x \sim_{C_1} y) \otimes (x \sim_{C_2} y)] \]

- (\otimes denotes logical XOR)

- In English: probability of random points \(x\) and \(y\) being clustered differently in clusterings \(C_1\) and \(C_2\).

- Hamming distance satisfies all conditions for being a valid clustering distance measure.
Risk optimizing clustering algorithms

- Algorithms that choose the clustering by optimizing some risk function.
- The largest class of clustering algorithms.
- Examples:
 - all center-based algorithms (k-means, k-medians,..)
 - spectral clustering, if re-formulated a bit
- Explicitly define a „quality“ for any clustering.
- The following theorems apply to all ROCAs.
The stability theorem

- Let P be a probability distribution.
- Let C be a clustering on P.
- “If P has a unique minimizer C, then any R-minimizing clustering algorithm which is risk-converging is stable on P.”
- (details & proof in the article)
• [Example 1: the uniform distribution]
The instability theorem

- Let R be an ODD risk function.
- Let d be an ODD clustering distance measure.
- Let P be a probability distribution that has n distinct minimizers.
- Let g be a P-symmetry, so that for each minimizer the distance d from clustering C to symmetric clustering $g(C)$ is strictly greater than zero.
- Then any R-minimizing algorithm which is convergent is unstable on P.
- (details & proof in the article)
• [Example 2]
Spectral Clustering: the NCuts version
Spectral Clustering: the NCuts version

• STEP 1:
 Construction of a full graph between training data points. Weights on the edges are the similarity measure values from the kernel function.
Spectral Clustering: the NCuts version

- Normalized cuts: minimize the sum of weights of edges that escape a cluster and normalize it relative to the total "weight" of that cluster.

- \(\frac{6+9+2+5+4+3+5+5}{6+9+2+5+4+3+5+5+21} \)
Spectral Clustering: the NCuts version

- STEP 2: Find the clustering that minimizes the normalized cuts.
For a graphs, the symmetry is usually defined as the existence of non-trivial automorphisms.
• [Example 3: The C_4 graph]
Spectral Clustering: the NCuts version

- In real life and for large amounts of training data points, exact automorphisms are unlikely to occur.
- Graphs based on data from a symmetric probability distribution will be "nearly" non-trivially automorphic.
- The uncertainty from the random sampling process will be enough to make the algorithm pick one clustering for one sample and another (possibly very different) clustering for another sample.
Conclusions

- The existence of a **unique minimizer** implies **stability**.
- The existence of a **symmetry** permuting such minimizers implies **instability**.
- Real world data rarely has a symmetric probability distribution.
- When searching for a meaningful number of clusters on the basis of stability, success should be viewed as an exception rather than a rule.